
8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 1/46

Licensed for Distribution

This research note is restricted to the personal use of Ilan Afriat (ilanaf@cyber.gov.il).

Structuring Application Security Tools and Practices for
DevOps and DevSecOps
Published 18 June 2020 - ID G00451296 - 80 min read

By Analysts Frank Catucci, Michael Isbitski

Initiatives:Security Technology and Infrastructure for Technical Professionals

Security and risk management technical professionals responsible for development, security

and/or operations of applications must adapt practices to support modern DevSecOps. This

assessment covers strategies and tooling that can be used to integrate application security

throughout a DevOps cycle.

Overview

Key Findings

Recommendations

As a technical professional focused on application security, you should:

DevSecOps provides great benefit to development, security and operations by promoting

consistency and speed through automation. However, certain manual tasks within DevSecOps

remain, and therefore, overall process is planned and considered carefully to ensure success.

■

Reusable components are fundamental in DevSecOps, particularly with respect to open-source

software (OSS). OSS reuse can introduce vulnerabilities into an integrated codebase, resulting

in additional security burden of vetting third-party OSS components.

■

Many tools offer native integration or web APIs to enable DevSecOps processes, but integrating

the disparate security and nonsecurity tooling is a significant hurdle. Growing adoption of cloud

and container delivery often increases complexity and can create potential security gaps.

■

Use application security requirements and threat management (ASRTM) tooling to partially

automate secure design activities. Refine as many of your security requirements as possible so

that they can be verified programmatically and implemented using externalized security.

■

Employ software composition analysis (SCA) tools to analyze packages for known vulnerable

OSS components, as well as to manage component use throughout the DevSecOps cycle.

■

http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 2/46

Analysis
DevSecOps is not only relevant to organizations creating their own applications, but also

important to organizations acquiring software. Organizations use a varying combination of

acquisition, outsourcing and custom development. Production implementation also often requires

creation of connecting software or custom code to make applications function as expected or

required.

Security and risk management technical professionals responsible for development, security

and/or operations of applications must adapt practices to support modern DevSecOps trends.

This analysis covers application security strategies and tooling that you should integrate and

automate within DevOps. These run from the initial-requirements analysis phase to the

maintenance phase. A heavy emphasis is placed on structuring application security around

development, build and deployment activities. This is where applications are being built in

homegrown use cases or where software packages are being configured in acquisition use cases.

Absent a mature application security culture, teams will likely desire different outcomes that can

impact priorities and tool selection, possibly even at the expense of overall security. Development

teams require accuracy and speed. Operations teams want stability and resiliency of architecture.

Security teams want thoroughness, broad coverage and assurance against weaknesses or

vulnerabilities. A successful DevSecOps program has to account for all these aspects in

processes and tooling. Ultimately, all teams must share the same goals and concerns.

DevSecOps cannot succeed without an overarching application security

program. Some processes and technologies cannot or should not be fully

automated. Manual practices may still help, or be required, to enforce or

reinforce application security structure, culture and measurement.

DevSecOps is about finding ways to tightly integrate application security, and other security

practices, into development and operations processes and tooling. Ideally, that is with a high level

of transparency and automation to avoid impact to teams. A standardized software development

life cycle (SDLC), from process and system perspectives, is ideal but not always feasible,

Use infrastructure automation capabilities and cloud workload protection platform (CWPP)

solutions to deploy applications to hardened systems or containers and monitor the application

throughout its life cycle.

■

Select security tools that provide native integration or full-featured APIs to connect with a broad

range of DevOps environments. Use application security orchestration and correlation (ASOC)

tools and capabilities to integrate security and nonsecurity tools.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 3/46

depending on the needs of the product in addition to the technology stacks. One security solution

may not necessarily be right for all applications because the SDLC used by each team — for

example, Scrum, Kanban, Safe, LeSS or disciplined agile — may be different for each product or

delivery team. However, a standardized SDLC will be essential to minimize the effort to integrate

security and reduce the likelihood of security gaps.

Multiple continuous integration and continuous delivery (CI/CD) build pipelines may be a reality

for your organization, especially where multiple technology stacks are in use. Each pipeline

includes an associated umbrella of tooling such as integrated development environments (IDEs),

CI/CD servers, version control systems (VCSs) and binary repository managers.

You are likely also dealing with a variety of infrastructure supporting your applications, including

virtual machines and containers beyond just physical servers. These may be deployed on-

premises, in cloud providers or both. You will need to integrate the security tooling and processes

into each. In some cases, this can present challenges with vendor selection, where a given vendor

may not integrate well with a given DevOps system or resource type.

As much as you can standardize or streamline DevOps practices and tooling (from early design

phase through to later operations phase), you will improve the likelihood of success with secure

DevSecOps. However, security should be careful not to force products or product teams to

change tech stacks to conform with tooling or standards that don’t apply to the application or

product. This impacts a number of areas to an overall program as well as development,

operations and security activities beyond the operational burdens and vendor technical

challenges, including:

Details on the various elements of an application security program are covered in depth in “A

Guidance Framework for Establishing and Maturing an Application Security Program,” as well as

in  “The Keys to DevOps Success” (webinar) and “Extend Agile With DevOps for Continuous

Delivery.” If you are unfamiliar with DevOps concepts and tools, the DevOps Practices and

Technology section below can serve as a primer for some of the nonsecurity concepts and

tooling.

Review Patterns of Application Security Focus

In talking with organizations and Gartner clients, four patterns of application security focuses

emerge. All are critical to an overall application security program. But organizations may put

heavier emphasis on a particular area due to a variety of factors, including organizational politics

or structure, budgets for staffing or tooling, or presence of preexisting tooling that may be

repurposed.

Centralization and management of artifacts, the latter of which includes vulnerabilities (that

should be tracked as bugs or defects)

■

Metrics rollup for the purpose of reporting intrateam, interteam and to executive levels■

Promoting security and nonsecurity collaboration and awareness■

http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 4/46

The focus areas are commonly one of the following:

All activities are critical for a successful DevSecOps approach. Where you choose to focus your

efforts initially impacts which tools you need to procure upfront, as well as what you can integrate

or automate.

Map Application Security to the Gartner DevSecOps Model

Figure 1 illustrates where these application security practices and technologies across the four

focus areas map to the Gartner DevSecOps model.

Figure 1. Application Security Activities in the Gartner DevSecOps Model

Secure design: Here, there is a heavy emphasis on process and “building security in.” Security

requirements gathering and enforcement, threat modeling, secure coding practices and

promoting use of trusted, externalized components are common elements. Standardize when

possible.

■

Development verification: Validation of secure-coding practices has been performed, security

requirements are satisfied, and the application is reasonably free of weaknesses or

vulnerabilities. Tooling like software composition analysis (SCA) and application security

testing (AST) is used to verify.

■

Externalized security: The focus here is on securing applications in production or runtime,

mostly outside of the codebase. A variety of technologies come into play, including web

application firewalls (WAF), application self-protection, API gateways, bot mitigation and

application shielding. It may also include workload-specific security mechanisms, such as

ensuring the hardening of server builds via continuous configuration automation.

■

Production security monitoring: This involves continuous discovery and monitoring of

applications and systems, within on-premises networks or CSPs. This is also the realm of

security operations centers (SOCs), vulnerability assessment and vulnerability management.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 5/46

Build Security Into the Design Phase

Activities here include security requirements, threat modeling, secure-coding practices and open-

source software governance. The focus is on “building security in,” ensuring that developers:

Details on the various elements, all of which are fundamental in an application security program,

are covered in depth in “A Guidance Framework for Establishing and Maturing an Application

Security Program.”

Translate Security Requirements

Security requirements can come from a variety of sources in document form, including resources

such as  Center for Internet Security (CIS), National Institute of Standards and Technology ( NIST)

and Open Web Application Security Project ( OWASP). Not all elements are specific to application

Create secure code from the beginnings of a project■

Make use of vetted, trustworthy components■

Leverage externalized security as much as possible■

Keep the codebase free of known vulnerable components.■

http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 6/46

security and often impact other aspects of security including network, mobile, cloud and Internet

of Things. Your own internal company compliance and security policies, unique to your

organization, will be an additional source of requirements. Also, regulations specific to your

organization’s sector or industry are a source of security requirements. Though mandatory for

affected organizations, organizations that are not affected may also elect to repurpose regulatory

materials for their own use cases.

Unfortunately, while these materials can be great sources of application security guidance at

points, they often read more like legal documents than technical references. There is a great deal

of overlap between the numerous frameworks, in some cases also cross-referencing preexisting

guidance like those from OWASP. There is also a largely manual step of translating these often-

lengthy documents into nonfunctional requirements for applications you are creating or acquiring.

Without tools to aid in digesting the numerous security requirements and regulations for your

specific industry/sector, you will need to invest time and effort in parsing these documents to

create relevant nonfunctional security requirements. These nonfunctional requirements should

live within other SDLC systems — namely application development life cycle management (ADLM)

and integrated development environments. Once you’ve created the baseline library of

nonfunctional requirements, you can associate them with current and planned application

development or acquisition, refining over time as necessary.

Determine Security Requirements Specific to Business Logic

Many security requirements are domain-agnostic or not specific to business logic of the target

application. Domain-agnostic issues manifest themselves as vulnerabilities that can be exploited

and are easier to test for programmatically as well as protect against with current security tooling.

Domain-specific issues are essentially abuses of business functionality, which are highly unique

to a given organization. When performing the translation of security requirements, you will need to

manually account for these differences with an eye toward verification. In other words, how will

you programmatically verify that a security requirement affecting business logic has been fully

satisfied (such as running through negative/abuse cases for a given functional requirement)?

Domain-specific issues tend to be a weak spot for most security tooling and automation. This is

due to uniqueness in application design and lack of awareness by the respective tool or

protection. In the absence of machine-digestible test cases, test automation scripts and API

schemas, effectiveness of security testing (such as AST) and application protections (such as

with WAF) is somewhat limited outside of exploit detection.

Some vendors are investing in areas of behavior analysis and artificial intelligence/machine

learning to improve product ability to “understand” baseline application behavior to proactively

identify application abuse. However, solutions may be more reactive or technology is still

emerging. Bot mitigation solutions, covered in the Deploy Network-Based Application Protection

section, are one such example.

Track and Maintain Security Requirements With Appropriate Tools



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 7/46

Organizations sometimes attempt to build elaborate spreadsheets or dedicated web applications

to publish and track security requirements. However, these efforts become difficult to maintain for

larger application portfolios. It’s a more effective strategy to create and maintain them within

application development life cycle management (ADLM) tools that your organization is likely

already using. An example of a security requirement being monitored is in the native DevOps

tooling in Azure DevOps Server 2019. Executed testing can be useful for adherence to the set

project requirements and tests. This can be seen in Figure 2.

Figure 2. Executed Testing in Azure DevOps Server 2019

Dedicated security tooling that can aid you in this area is in the category of application security

requirements and threat management. This tooling is focused on security requirements and is

limited to a handful of vendors, including Continuum Security IriusRisk and Security Compass SD

Elements, as well as the open-source OWASP Security Knowledge Framework. In some cases, the

tools are also positioned as aiding the process of threat modeling because they identify potential

threats and vulnerabilities.

The tools are focused on security requirements gathering and enforcement that are facilitated

through self-questionnaires. They are designed to present application teams with simplified,

dynamic GUIs that allow application owners or developers to rapidly select elements of their

application and system design. Other security or compliance teams may preconfigure the tools to

ensure that the appropriate corporate policy and regulatory requirements are also enabled by

default. The tools parse the provided metadata about the application and system, perform the



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 8/46

mapping to appropriate and/or necessary security requirements, and return a list of the relevant

security requirements, possibly with secure-coding guidance, that should or must be satisfied for

the given application design.

The dedicated application security requirements and threat management (ASRTM) tools provide

GUIs that display results. But the reality is that, for DevSecOps, these requirements must exist

within the systems that design and development are occurring in, namely ADLM and IDEs. Most

dedicated ASRTM tools provide integration with the major ADLM and defect tracking systems,

where these requirements can be tracked as nonfunctional security requirements. This can

enable your organization to centralize in the SDLC ecosystem to help ensure application teams

account for requirements as part of design and development.

Application teams can determine owners of security requirements. Also, security professionals

must be part of this team. They must work with product management and the team members to

identify the security requirements for the product, as well as for the processes, practices and

tools, to ensure those requirements are met.

Owners can be identified programmatically if such mapping exists within the ADLM. An example

of a work list of requirements in Azure DevOps 2019 is shown in Figure 3.

Figure 3. Example Work List of Requirements Within Azure Boards (Azure DevOps Server 2019)

The presumption is that the owner of a given requirement will satisfy that requirement fully and

implement the appropriate control (or controls). But in practice, it may be tempting for a product

owner to skip the necessary work. You can also configure the build process so that satisfaction of



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BYS… 9/46

security requirement work items is a prerequisite to initiating a software build. Realistically, you

still need to verify all security requirements with a test tooling to account for factors such as

human error or improper implementation.

Adapt Threat Modeling Practices

Unfortunately, the process of threat modeling is largely manual, even with available tools. It is

certainly time-consuming for complex implementations as well, creating a challenge to fit into a

DevSecOps program. The challenge is exacerbated with modern application design, where you

may be dealing with hundreds of interconnected web APIs, as well as virtualized systems

distributed on-premises and in the cloud. A given architecture diagram may look like a “spaghetti”

or “Death Star” diagram and be less than human-readable.

Threat modeling, while a valuable application security exercise, is not

easily integrated into a DevSecOps toolchain. It is largely a manual

process, and dedicated tooling does not yet exist to programmatically

analyze an application design and all its interactions, end to end, with

accuracy.

As a result, many organizations skip threat modeling entirely, even in traditional waterfall

development and non-DevOps approaches. However, the resulting knowledge of the target system

and development of skill in threat/vulnerability identification are important processes to adopt

into an organization’s overall DevSecOps program and not just the automated pipeline. Enforce

the principles of secure design, and increase awareness of teams by providing application

security training. If an individual can rapidly identify a weakness as they’re creating or configuring

an application, he or she can proactively mitigate it without the need to test for or protect against

it later.

To account for rapid, iterative changes that typically occur in agile development,  incremental

threat modeling is an option. 1 Using this technique, you model only new or changed pieces of the

application or system, as opposed to the entire architecture, which would otherwise necessitate a

complete threat model. It facilitates this through use of a “legacy blob” to represent preexisting

system elements, as visualized in Figure 4. This can help reduce the amount of time to generate

threat models because it confines the activity to only the changes.

Figure 4. Example Incremental Threat Model for Web Browser and API Interactions

http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 10/46

You should still generate complete threat models at some point in the life cycle of the application

or system, at least for your organization’s most critical or sensitive assets. However, as you

incrementally model the changing parts of the design over time, you are collectively building a

threat model for the entire system, assuming active development of all features.

Although there is no tool available today to merge and combine incremental threat models into a

full model, it is conceivable through manipulation of the raw XML data. Still, the knowledge and

skills gained with the incremental threat modeling approach reduces the time it takes to generate

or review complete threat models. As with traditional threat modeling, incremental modeling is

also still a manual process and difficult to integrate or automate as part of the DevSecOps

toolchain. However, it does result in simpler, more easily digestible threat models. This can

translate to further time savings when translating the identified vulnerabilities into nonfunctional

requirements or bug tickets.

Use Application Security Requirements and Threat Management Tools in Threat Modeling

You can use ASRTM tools that focus on textual security requirements if a visual model is not

necessary for your purposes because most vendor tools perform a type of lightweight threat

identification. ASRTM tools that focus on traditional threat modeling and produce visual data flow

diagrams include foreseeti securiCAD, the Microsoft Threat Modeling Tool, Mozilla SeaSponge,

MyAppSecurity ThreatModeler and OWASP Threat Dragon. Microsoft’s tool is one of the most

well-known and free to use, while the other vendors provide more advanced functionality or

integration with SDLC systems.

The open-source ThreatModel SDK enables parsing of models created with the Microsoft tool to

facilitate integration with defect tracking systems (that is, to ensure identified vulnerabilities are

mapped to nonfunctional requirements or bug tracking tickets). 2



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 11/46

The Mozilla and OWASP projects are open source, web-based and may lack some critical features

that your apps or teams may require. However, they may be useful for producing simple models

or, being open source, you may adapt the code to fit your needs. An area of  U.S. Department of

Homeland Security-funded R&D for a small set of application vulnerability correlation (ASOC)

product vendors is to enable dynamic threat modeling of applications using instrumentation

techniques and/or output of application security testing. Although the idea may sound promising,

tooling beyond current ASOC capability still needs to materialize for this to become reality — that

is, something you can employ for dynamic threat modeling in your DevSecOps program.

Distribute and Promote Secure Coding Practices

There are numerous security requirements that help define the types of controls you should put in

place for a given application or system. However, they often provide little technical guidance on

how to go about accomplishing this. Your secure coding practices must provide code-specific

guidance to address security challenges that arise in application development. They should

recommend trusted functions such as native secure functions, trusted third-party libraries or

externalized security mechanisms over custom code.

One such example is secrets management. Secrets such as authentication credentials, Amazon

Web Services (AWS) access keys or encryption keys typically should never be stored in

codebases or public repositories. What mechanisms are you providing to development teams to

facilitate secrets management, and are you providing corresponding code-level guidance so that

development teams can implement the functions correctly?

Secure-coding practices and technical guidance come from a variety of sources, including the

Computer Emergency Response Team (CERT) division of the Software Engineering Institute,

OWASP and each respective vendor for a given technology. Others can be adapted from AST tools

such as static application security testing (SAST). Security may be incorporated as part of design

(presuming a development team hasn’t purposefully circumvented) or, more commonly,

inadvertently passed because most developers do not fully understand deep secure coding

practices. Security has traditionally been something that is validated near the end of the delivery

cycle when it is difficult to change.

You must account for the potentially numerous languages and technology

stacks in use in your organization. Seek to standardize as much as

possible to ease DevSecOps efforts overall.

This is very much a matter of software development life cycle development maturity, specifically

formalization of the technology that development teams use and the associated development

processes. Once you have made those decisions, you can draft secure coding practices using the

variety of technical reference materials available.

http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 12/46

Ideally, this is a collaborative effort among DevOps teams to account for language and technology

stack complexities. Additionally, these practices promote application security awareness among

product management, security, development and operations teams. This is a manual process

similar to the translation of security requirements from document form into nonfunctional

requirements as part of your application development life cycle management. However,

information on secure coding is less linked to the SDLC ecosystem, and integration with

developer IDEs and ADLM is not well-supported today. It requires some creativity to get guidance

to developers where it is most essential, such as storing and linking information within ADLM or

some other knowledge management system. Further information may be found in “How to Build

Successful Communities of Practice for Knowledge Management.”

Employ AST Tooling to Promote Secure Coding Practices

Ideally, IDE tooling would advise the developer how to create secure code or utilize secure

functions of the given language or framework, like how IDEs suggest functions and variables as a

developer codes. Application security testing tools fit the bill here and are not limited to just

verification activities.

When integrated properly, AST tooling, especially SAST, can provide immediate feedback to

development teams as they build applications. AST tools have the added benefit of providing

details on why vulnerabilities arise, recommendations on how to resolve vulnerabilities, and code

samples to help understand the concepts and mitigations.

The three methods of delivery here are:

Automate Governance of Open-Source Software

Externalized security, beyond those vetted libraries you build or other externalized security

capabilities you implement, includes the use of trustworthy open-source software components.

“Spellchecker” SAST: This tool advises developers of weaknesses or vulnerabilities as they

code in the IDE. This is limited to a subset of vulnerabilities because the tools do not have full

context of the complete codebase or the plug-ins’ focus on high accuracy over scanning depth.

Some vendor products in this space include Micro Focus (formerly HPE Software) DevInspect

and Synopsys SecureAssist.

■

SAST ad hoc scans: Initiate ad hoc SAST scans via an IDE plug-in and receive results nearly

immediately, depending on complexity and lines of code in the given codebase. Results may be

less accurate (that is, higher false positives and false negatives) than running SAST during CI

as part of build scripts because it may not include the entire codebase or all integrations. Most,

if not all, SAST vendors provide this capability.

■

DevOps-friendly SAST ad hoc scans: Initiate ad hoc SAST scans via an IDE plug-in with a focus

on higher accuracy, precision and actionable guidance. Results may be returned within the IDE

or in a separate web application. Some vendor products in this space include Veracode

Greenlight and WhiteHat Scout.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 13/46

Software composition analysis (SCA), which now encompasses open-source software

governance (OSSG) tools, provides functionality to facilitate management and use of OSS

components throughout the life cycle of an application. To put it another way, detection and

reporting of a vulnerability in an OSS component — as with software composition analysis alone

(point in time or continuously) — simply isn’t enough. Other mechanisms need to be in place that

can advise teams of OSS issues during development, build and distribution phases, integrated

with the numerous SDLC systems. While useful as part of secure design, the capabilities are

beneficial for verification and production security monitoring focus areas.

SCA solutions now provide multiple integrations with SDLC systems and support additional

workflow around OSS component use to fill a variety of requirements in DevSecOps, including:

Vendor products in this space include Black Duck by Synopsys, Revenera FlexNet Code Insight,

JFrog Xray, Sonatype Nexus IQ Server, Snyk, Tidelift and WhiteSource. JFrog and Sonatype

leverage and integrate with their respective artifact repository products to facilitate the full SCA

functionality, which are Artifactory and Repository Manager, respectively.

It is worth emphasizing that the use of and standardization on version control systems and binary

repositories is especially critical in DevOps and DevSecOps. This minimizes the amount of

integration work you need to do to integrate verification tooling. It also will reduce the likelihood of

vulnerable components or those that have not been vetted creeping into your application

codebases.

Detect and expose outdated OSS component versions during source code commits and

throughout the life cycle of the application.

■

Detect and expose OSS components with known vulnerabilities, common vulnerabilities and

exposures (CVEs) or otherwise during source code commits and throughout the life cycle of

the application.

■

Uncover OSS use that violates open-source licensing.■

Provide visibility of OSS component use enterprisewide (that is, for a given OSS component,

they expose which applications in an organization’s portfolio make use of it and may be

impacted).

■

Advise development teams of recommended OSS components and latest versions as they

browse for them, fetch them within IDEs, or pull components in from public repositories.

■

Alert on or block development teams from pulling in known vulnerable components and storing

in organizational code or artifact repositories.

■

Alert on or fail software builds within the continuous integration and continuous delivery build

pipeline if known vulnerable components exist.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 14/46

As a general best practice, you should promote the use of the latest versions of OSS components

whenever possible and where other code dependencies permit, which the SCA tools help

facilitate. Vetting the numerous OSS libraries and versions can be a fool’s errand given the rate of

change, and leaning on tooling is essential, if not mandatory. Some organizations will vet OSS

libraries (typically with the aid of tooling), store them in a centralized repository for developers

and block access to other sources.

Restrictions are often implemented via:

This can be a resource-intensive endeavor, even with appropriate tooling. Without the aid of

tooling, guaranteeing a level of security in OSS components will be difficult, if not impossible.

Analysis of the social media conversations on application security testing confirms the year-over-

year increasing mentions of software composition analysis from 2017 through 2019 (see Figure

5). Conversations on mobile application security testing also grew in popularity on social media

with focus on its ability to reduce risk of data breaches, to test and to identify all potential

vulnerabilities, as well as to ensure safety requirements of a mobile application meet all adequate

security compliance.

Figure 5. SCA Importance and Focus Shift From 2017 Through 2019

SCA blocking mechanisms: Block OSS components as they are imported into the IDE, checked

into a VCS or binary repository, or committed for build as part of CI/CD

■

Secure web gateways (SWG): Block access to public repositories■

Cloud access security broker (CASB): Block access for reading/writing of code or artifacts in

public repositories

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 15/46

Choose Relevant Tooling for Development Verification

These activities are a dominant focus within a DevSecOps program. Technology options are more

plentiful and readily integrated into development systems. Relevant tooling consists of SCA, AST

and fuzzers. These capabilities are covered in depth in “How to Integrate Application Security

Testing Into a Software Development Life Cycle.” Figure 6 provides a conceptual visualization of

continuous testing within a CI/CD build pipeline and of handling output of tools.

Figure 6. Integrating Security Testing Into a CI/CD Build Pipeline



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 16/46

Integrate Application Security Testing Into DevSecOps

The type and number of AST tools that you will require are a factor of your application portfolio.

As a prerequisite to selecting tools, you need at least a base-level understanding of what

applications exist within your organization as well as what is being actively developed or

procured.

In the context of DevSecOps, certain types of AST technology are easier to integrate or automate

than others:

Embrace Iterative Testing Over Full Testing

SAST is most easily integrated into CI/CD build pipelines.■

DAST is heavily dependent on test automation.■

Interactive application security testing (IAST) is useful for real-time testing independent of the

CI/CD pipeline.

■

Mobile application security testing (MAST) is the least automation-friendly due to the mixture

of techniques.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 17/46

Integrating and automating AST requires that you incorporate tool configuration and execution

into the build pipeline. With agile development and DevOps, there is a higher frequency of

incremental changes to an overall application, as opposed to traditional waterfall or monolithic

approaches where releases might be monthly or quarterly. Ideally, you want to target only those

functions and sections of the more monolithic codebase that have changed. Iterative scans need

to be initiated more frequently, possibly weekly or even daily depending on the pace with which

development teams are modifying code.

This is accomplished through:

Full scans should be performed on a regular basis, regardless of company policy or industry

regulation. Scans should leverage integration with the CI/CD pipeline to ensure they are always

performed. They may also need to be run asynchronously outside of production release windows

or scheduled to run ad hoc based on defined security policy. The traditional “kitchen sink

approach” with scanning can and will stall the CI/CD build pipelines, making the scheduling

aspect important. No production release should occur without some type of security testing, but it

is a question of whether an iterative or full scan is most appropriate.

Restricting scope doesn’t equate to testing only for subsets of issues such as those contained in

the OWASP Top 10. 3 Rather, it’s more about scanning for issues relevant to what was changed in

code. If no code that impacts application input was modified in the latest code change, it should

be unnecessary to rerun checks for vulnerabilities like cross-site scripting (XSS) or SQL injection.

This is also where ties back to functional and nonfunctional requirements (and integrations with

those systems) can help guide automated testing.

Leverage Requirements, Test Cases and Test Automation

Reusing test automation processes and tools for security testing should be high on the priority list

for DevSecOps. Technically, these are critical if not necessary for DevOps, let alone DevSecOps.

Gartner research in the area of application test automation includes:

For information about concepts for building continuous delivery and security, see:

Using web APIs, native integration or command line interfaces (CLI) to enable communication

between security and nonsecurity tools

■

Adjusting policies and configurations (ideally programmatically) in each AST tool to restrict

scope to just the relevant changes in the application and by running only the appropriate

checks

■

“Use Test-First Development Processes to Jump-Start Your SDLC”■

“Solution Path for Testing Software Applications”■

“Solution Path for Achieving Continuous Delivery With Agile and DevOps”■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 18/46

Clearly defined requirements and unit tests should be reused to help address some of the

challenges that arise with incremental SAST. And test scripts from functional testing should be

reused to help alleviate some of the complexities of incremental DAST, particularly obtaining

authenticated context and exercising applications. Factor these into your AST tool selection,

where it becomes a requirement that the tools accept the various test cases or test scripts as

input to control scanner behavior. When integrating with these traditional development and quality

assurance (QA) practices and tooling, there is the additional benefit of aligning skill sets across

development, QA and application security teams. QA teams are also adapting to the realities of

DevOps, similar to how security teams are being challenged.

Integrate SAST Tooling Into Development Systems and CI/CD Build

SAST tools are often marketed as one of the easier fits for development environments and a

CI/CD build pipeline due to where they integrate with code commit processes and build tools such

as Ant, Maven and Gradle. They also typically complete scanning within a reasonable time

window for a given release, barring cases of extremely large or overly complex codebases.

Unfortunately, while SAST may be relatively easy to integrate and run quickly, it has sometimes

earned the reputation of generating too many findings or too many false positives.

Higher volumes of findings are largely inherent in product design because SAST tools evaluate the

codebase itself, as opposed to the compiled application. If you desire further vetting of results to

verify exploitability, you will need to leverage DAST or perform (out-of-band) manual testing. False

positives may also be symptomatic of detecting issues in external dependencies like OSS

components or reporting duplicate instances of vulnerabilities. Address the OSS drawback with

dedicated software composition analysis or open-source software governance tooling. Use

application vulnerability correlation capabilities to handle the issue of duplicate findings, which is

covered in further detail in the Use ASOC to Aggregate Verification Results section.

With multiple code releases and incremental updates prevalent in agile and DevOps, it also

becomes an issue of whether the SAST tool is evaluating only the relevant changes or deltas as

opposed to the entire codebase. Otherwise, you may be uncovering issues already detected in the

full codebase and wasting time and resources scanning code that has already been evaluated. This

can be satisfied with incremental SAST scans.

Repurpose Test Automation and Tune DAST for CI/CD

Unfortunately, dynamic application security testing has a downside of being very unpredictable in

scan completion times. This is particularly true with modern, dynamic, single-page applications

(SPAs). These SPAs technically consist of some JavaScript presentation layer that interacts with

any number of back-end web APIs (typically representational state transfer [REST]) to send and

receive data.

Organizations fall in one of two camps in how they employ DAST in their CI/CD process:

“Best Practices for Securing Continuous Delivery Systems and Artifacts”■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 19/46

With the second scenario, the DevSecOps pipeline becomes an impediment to code, app, services

or script releases. Some organizations choose to take this approach. However, running DAST

scans synchronously may impact the business, depending on timing of when “final” code is

presented for verification and the ability for the DAST scanner to analyze the compiled application

in a timely manner. Security processes (or latency of them) may be questioned as a result,

especially if your DAST implementation is not fine-tuned and automated. Production release

gating is usually implemented as part of CI/CD by failing builds, as well as in change control

processes. Variances in scan completion time can make DAST challenging to squeeze into a

CI/CD build pipeline.

Reduce DAST scan times by restricting URL scope, tweaking scan policies for specific categories

of vulnerability or limiting scanning to relevant code changes. All are a form of incremental

scanning and can be implemented programmatically with most vendor products.

The third approach is more complex, requiring tighter integration between development, QA and

application security teams. In those cases, repurpose functional test automation scripts or

employ test-driven development (TDD) or behavior-driven development (BDD) concepts to limit

testing to only the relevant changes. It is also recommended, ultimately, to rearchitect monolithic

applications into more modular/componentized applications. This will speed all development and

testing activities by isolating change and reducing risks.

The use of wrappers or middleware that employ BDD concepts and technology for the purpose of

DAST is still nascent. There are a small handful of OSS options with limited functionality that exist

as starting points. Unfortunately, most are in maintenance mode and lack integrations with the

majority of commercial tools. However, they can be customized for use with other security testing

tools in most cases, provided the tool accepts input and provides output through some scriptable

means. The topic of a framework or orchestration layer for AST is further analyzed in the

Orchestrate Application Security Testing section.

Evaluate Interactive Application Security Testing If DAST in CI/CD Is Problematic

IAST vendors market their products as ideal fits for DevSecOps, justifiably for the most part.

Theoretically, IAST can detect and report issues as the application is running, addressing the

“continuous” aspect that is fundamental in DevOps. Coincidentally, hooks into repositories or

continuous integration/continuous delivery systems become less necessary because the

technology tests continuously and automatically.

IAST will be limited to languages and modern-technology stacks because it depends on

instrumentation and installation of agents onto application servers to power scanning. This

means your Java and .NET applications are likely supported, along with the possibility of Ruby,

Python or Node applications, depending on the vendor. Keep vendor selection limited to self-

Run DAST scans asynchronously, triggered as part of CI/CD but not blocking for a release.■

Run DAST scans synchronously in the CI/CD build pipeline, blocking the release until scanning

is complete.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 20/46

testing IAST variants in order to avoid the challenges of having to automate separate DAST scans.

As users or testers perform nonsecurity testing against a given application, IAST observes

application calls and identifies issues within the instrumented application code. Drive application

behavior using functional-test-automation techniques and tooling (as in DAST), or piggyback on

other manual testing that happens within your SDLC.

IAST providers also often provide some type of SCA-like capability to detect known vulnerable

components. These tools have this visibility by virtue of sitting in the application stack and seeing

what OSS components are being invoked as part of the application codebase. Results of IAST

testing are more real-time and not be triggered by ad hoc scans or builds as part of CI/CD. As a

result, findings may come in sporadically during regular FT, UAT, and so on and as a side effect of

changed code or components. Performance testing may be the right time to do this. Automated

functional testing executed via CI may work as well.

The IAST tools commonly provide a GUI for managing findings, similar to what you would find in

SAST and DAST tools. Like those other testing technologies though, the results are best output to

defect tracking systems so that vulnerabilities can be tracked as part of the SDLC and mitigated

accordingly.

Automate Elements of Mobile Application Security Testing

Of all the AST types, full MAST is typically more of a manual effort due to the number of

component interactions that are inherent in mobile application design. Mobile applications may

involve the use of:

SAST and DAST automation challenges still apply, with additional hurdles of behavioral analysis

on-device or in an emulator. If you desire in-depth analysis of all components and interactions for

a given mobile application, you will likely need to reserve it for out-of-band activity outside of

CI/CD.

Pieces of MAST can be automated depending on the vendor, but unique tooling is required to

perform in-depth analysis against pieces like a native, rich-client component. In some cases,

these tools cannot be automated and may still require manual operation. “Market Guide for

Mobile Threat Defense” provides details on vendors in the MAST space. Vendors providing mobile

threat defense (MTD) and mobile application reputation service (MARS) also sometimes compete

here. Strategies for mobile security are examined further in “Advance and Improve Your Mobile

Security Strategy.”

A web application back end (as with web applications formatted for mobile device form

factors)

■

A lightweight or heavyweight on-device binary (as with hybrid mobile or native, rich-client

mobile applications)

■

Collections of web APIs to facilitate business functionality■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 21/46

Use API Schemas and Test Automation for Effective Web API Testing

Use SAST tools to test source code for web APIs regularly, provided the original source is

available and the language is supported by the scanner. Your DAST tools may encounter issues

navigating and testing SPAs and the corresponding web APIs due to higher complexity and

variation in how web APIs function. REST is a style of web API development and not a standard

like that of SOAP. A given web API can be designed in a large number of ways. What looks like a

directory path in the URL might actually be a function, a variable, an attribute or something else. If

the REST API also exchanges data via JavaScript Object Notation (JSON) payloads,

understanding the structure of the data for requests and responses is yet another hurdle to

overcome.

API schema definitions (typically Web Services Description Language [WSDL] with SOAP, API

Blueprint, OpenAPI/Swagger or RAML with REST) provide machine-readable data so that a given

tool understands how to exercise a web API. Development teams often model APIs with special-

purpose tools, and resulting schema definitions can be exported for use in other tooling. The topic

is covered in detail in “A Guidance Framework for Creating Usable REST API Specifications.” Your

DAST tool needs to be able to accept these schema definitions as input in order for it to be useful

for guiding the security testing. Not all DAST vendors support these today, and OpenAPI/Swagger

is probably the safest bet if they do support it.

Performing effective DAST scanning directly against a web API is difficult at best. Web APIs can’t

be crawled or spidered like a traditional web application. In the absence of schema definitions for

web APIs, you will need to leverage some interfacing application that consumes and exercises the

web API. The DAST scanner would observe these requests and responses, and then analyze and

manipulate the traffic to uncover vulnerabilities. If test automation scripts, such as Selenium, are

present, then these should be used to drive the DAST scanner.

IAST does not suffer from these same issues because it instruments the application code as it is

running and does not rely on URL endpoints. This is presuming that you are using a self-testing

IAST tool that is not dependent on a DAST inducer, and that the IAST agent supports the given

technology stack powering the web API. Testers still need to use the applications that make use

of the APIs so that IAST can observe the internal application calls. Or, you could leverage test

automation tools and scripts that exercise the API. If a DAST inducer is required by the IAST

solution, then the same hurdles present in traditional DAST remain.

Integrate Fuzzing in DevSecOps

Integration of fuzzing into DevSecOps is feasible to an extent. It may be possible to initiate a

corresponding fuzzing tool as part of the CI/CD build pipeline, having the fuzzer itself run without

intervention. But fuzzing tools require significant configuration upfront to be effective. The

complexity is similar to DAST, which is essentially a type of HTTP fuzzer itself, but the wider range

of potential variables worsens the problem. This variation includes application behavior, file

formats, communication methods and input types, among others. As a result, fuzzing may

produce different results over a series of test runs because of the high number of variables. Like



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 22/46

DAST, scan completion times are unpredictable, meaning fuzzing will likely need to be performed

asynchronously so as not to impede a code release.

Outsourcing or leveraging managed services to perform fuzzing is recommended in the absence

of internal subject matter expertise and staffing. Nonetheless, some tools in the fuzzing space

include the commercial tools Peach Tech Peach Fuzzer and Synopsys Defensics. SaaS options

have also started to emerge, such as Microsoft Security Risk Detection (formerly Project

Springfield) and OSS-Fuzz (operated by Google for analysis of open-source projects). Finally,

some organizations also leverage specialized debuggers to analyze binaries. Some vendor

products in that space include Hex Rays’ IDA Professional (aka “IDA Pro”) and Rogue Wave

Software’s CodeDynamics.

Handle Output of Verification Tooling

Integrating verification tooling into a CI/CD build pipeline is one part of the equation to check for

vulnerabilities systematically. However, the issue of how to respond when you do uncover a

vulnerability must be addressed.

If vulnerabilities of high-enough severity are found during automated testing, you need to make a

choice whether to:

You must configure these choices programmatically as build rules within the CI/CD server for the

given project leveraging integration with the AST tools so that the appropriate decision can be

made based on scan results.

The choice in how to proceed with a build is largely a factor of one or more of the following:

As an example, if a vulnerability of high-enough severity is detected during scanning, and code

releases are performed multiples times a day, then it may be reasonable to assume that the

vulnerability can be reported and fixed in a later release that same day. In that case, it may be

acceptable to complete the build and release the application. Conversely, if code releases are

weekly or monthly, then it may be undesirable to proceed with the build and deployment. If your

organization has zero tolerance for vulnerabilities of any severity and/or no other mitigating

Accept the risk temporarily until a code fix or mitigation can be developed and deployed■

Fail the build and revert code if necessary■

Development cadence or frequency of code sprints■

Compression of the production release schedule and whether there is enough “wiggle room” to

slow down the CI/CD pipeline momentarily

■

Frequency of production releases■

Security sensitivity of the organization■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 23/46

controls, such as a web application firewall, are in place, you will likely want to fail the build if any

vulnerabilities are detected. In either case, vulnerability findings must be tracked accordingly.

The traditional security practice of generating and emailing vulnerability

reports in document form will not scale in a DevSecOps pipeline.

You should track any findings from verification tooling as bugs using the same SDLC systems and

process for defect tracking and reporting. In most cases, they would be higher-severity bugs,

particularly if the vulnerability itself is higher-severity. Verification tooling integration with bug

tracking systems is fairly common and is a critical evaluation criterion when selecting an AST

vendor. Integration with Jira Software is common, with Bugzilla and Microsoft Azure DevOps

Services often in the mix as well.

Although vendors often support integration with bug tracking systems, the level of support is

important to dig into. If a given AST tool can simply log bug tracking tickets for every vulnerability

from a current scan, it is not an ideal method of integration. For most organizations, this will start

to generate high volumes of tickets, especially with SAST. Figure 7 illustrates the concept and the

resulting volume of tickets that the processes generate.

Figure 7. Bug Ticket Generation From Security Testing in CI/CD

Communication with defect tracking systems may be unidirectional as opposed to bidirectional.

In the unidirectional model, there is typically no linkage to existing bug tickets. If a vulnerability is

uncovered in scanning, a bug ticket will be created even if a ticket has been logged from a

previous scan. Additionally, if any employee updates the bug ticket in the defect tracking system,

there is no communication back to the AST tool that the issue has been potentially corrected and



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 24/46

needs to be verified. More vendors are starting to add support for bidirectional models, but it

typically requires some level of ASOC capability to accomplish correctly. Specifically, the AST tool

needs to track vulnerabilities from scans over time and update bug tickets as necessary, not just

create new ones for every scan. The issue is compounded if you are running multiple AST tools

from different vendors, where tool output (raw data and not generated reports) is in varying

formats.

Use ASOC to Aggregate Verification Results

Use application security orchestration and correlation capabilities to prioritize high volumes of

AST results and orchestrate AST tooling in the build pipeline. Feed aggregated results into

application development life cycle management or bug tracking to drive remediation.

ASOC capabilities attempt to consolidate scan data across scans. Correlation attempts to

address some of the issues that arise as a result of performing AST at scale, including:

As similar AST scans and rescans are run against a given application, the output and historical

data needs to be normalized to avoid duplicate entries (and duplicate bug tickets) for already

reported issues. Figure 8 is a visual depiction of ASOC acting as a funnel and filter for AST results

to control the volume of tickets that testing processes generate.

Figure 8. Use Application Vulnerability Correlation to Handle Security Testing Output in CI/CD

Same AST tool output correlation: Aggregate and deduplicate historical scan data using

similar AST tool types (for example, SAST to SAST) that have been run against a given

application.

■

Disparate AST tool output correlation: Aggregate and deduplicate scan data across different

AST tool types (for example, SAST to DAST) that have been run against a given application.

■

Centralized metrics: Consolidate findings data into one central location and/or for export into

bug tracking systems.

■

Vulnerability regrading: Regrade findings programmatically based on criteria or metadata

about a given application such as business criticality, data sensitivity, exposure and

functionality. In some cases, this may be based on additional threat intelligence based on

vendor implementation.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 25/46

This tends to be well-supported within the same category of AST technology (such as SAST with

SAST or DAST with DAST), but merging data across AST types proves challenging. Not all vendors

provide the same level of correlation. Integrated ASOC, often bundled with AST tool suites, may

only support correlation of output for the vendor’s own AST tools. Correlation may also be more

basic, or it may not provide sufficient, granular control over scan output to aggregate results from

high volumes of scans. Dedicated ASOC vendors use more advanced techniques to correlate

data, and their products also provide integrations with disparate AST tools from multiple vendors.

However, it results in more point solutions and higher complexity.

Ultimately, the decision to use integrated or dedicated ASOC will be a factor of whether a given

vendor and its AST capabilities can meet all of your organization’s needs so that you can

standardize on their suite of tools alone. Otherwise, you may require a dedicated ASOC capability

to aggregate AST output. Integrated ASOC typically comes bundled with any AST suite — on-

premises or SaaS. Dedicated ASOC options are more limited, with Code Dx and Denim Group

being the two commonly named vendors. There is some overlap with vulnerability prioritization

technology (VPT) and security orchestration, automation and response (SOAR), where vendors

like Kenna Security take a similar approach. But those products primarily focus on aggregation of

network security scan and vulnerability assessment output.

Explore Remediation Options Beyond Just Code Fixes

Though a fair number of pieces of a DevSecOps pipeline can be automated, remediation of issues

is not currently one of them. When issues are detected, you can certainly log bug tracking tickets

to ensure a fix is ultimately put in place. This need not be a code fix and may entail other

remediation measures like a virtual patch or architectural mitigation. With API enablement of

externalized security and production runtime controls, it becomes possible to automatically

create and implement a virtual patch. However, few organizations do this today largely due to

concerns about availability impact and the small percentage of risk that a patch could introduce

other issues in the production environment. As organizations fully embrace cloud-based

infrastructure, infrastructure as code, test automation and other DevOps principles, it becomes



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 26/46

easier to deploy and roll back changes quickly if a mitigation does introduce problems. This is a

rare case today though and typically seen only within technology organizations.

Realistically, you will need to track vulnerabilities over time, making use of ASOC capabilities and

following traditional vulnerability management best practices. As issues are uncovered, you may

opt to fail a build in the CI/CD build pipeline, but there will be cases where you will need to

proceed with deployments despite vulnerabilities. The most obvious case would be severity of the

issue uncovered. Truly critical vulnerabilities should certainly result in a failure. Medium-severity

issues should result in a logged bug tracking ticket but not necessarily failing the build. The

decision to fail a build could also be a combination of multiple lower-severity issues or a

threshold that needs to be met. One medium-severity issue may not result in a failed build, but

maybe 10 separate instances of medium-severity issues do result in a build failure. These

decisions will depend on the application in question and such factors as data sensitivity, business

criticality, exposure and your organization’s risk tolerance.

Code fixes are one of the more expensive remediation options in terms of time and developer

resources. If you are outsourcing development, this may be further amplified. Organizations fully

embracing DevSecOps need to get comfortable with the concept of virtual patches and other

mitigations over code fixes. Externalized security controls like WAF or runtime application self-

protection (RASP) can be leveraged in most use cases (excluding some application platform as a

service [aPaaS] and function platform as a service [fPaaS] use cases) to address design

weaknesses and vulnerabilities in applications. Virtual patches may be short-term or long-term

depending on the root cause and target application. It is not uncommon for an organization to be

operating applications and systems in maintenance mode. These applications are still actively

used, but no resources are invested in updating the codebase. Development teams may also have

been long since disbanded, or development of the original codebase was completely outsourced

with no access to source code. In these cases, code fixes are unrealistic, if not impossible.

Once a vulnerability has been identified in a given application through security testing, it is mostly

a trivial process to create a corresponding rule in an externalized security control (if present) to

protect against exploitation of it. Similarly, if the issue is infrastructure-related, and the asset is

virtualized (such as with infrastructure as code), then patching and redeploying the affected

virtual machine, container or container cluster is another remediation option.

Orchestrate Application Security Testing

Like the CI/CD process itself, which relies on layers of orchestration to initiate process and control

systems (largely controlled by a CI/CD server), coordinating the running of security testing tools

across the different testing types also requires orchestration. Rarely, if ever, will you run an AST

tool using the native GUI in a DevSecOps program, because it is a manual process. AST tools

typically offer integration mechanisms to facilitate automation in the form of command line

interfaces, native integration, or web APIs for more extensive customization. Native integrations

for popular CI/CD servers may exist with more-established security vendors, but they may not

provide enough control over scans and scan results (such as with incremental scanning). Web

APIs among vendors, while often well-documented, are largely unstandardized. It is possible to



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 27/46

“stitch” together the various tooling through shell scripts or custom coding initiated as part of

CI/CD process. However, this is, at the very least, resource-intensive, if not beyond the subject

matter expertise of many application security practitioners. It is likely a better-suited task for

development teams (or high-maturity security teams possessing development expertise).

Vendors are starting to address the gap to some degree, which Gartner categorizes as application

security testing orchestration (ASTO). Similar to what we see in the ASOC space, integrated

capabilities may be limited to just the vendor’s specific tools, and dedicated capabilities are still

an emerging market. Also, like the ASOC space, Code Dx and Denim Group are the main vendors

seeking to address the gaps by enabling invocation of AST as part of vulnerability correlation and

SDLC integration. ZeroNorth takes a slightly different approach, spinning up virtual test

environments that mimic production and running AST tools against those ephemeral,

nonproduction assets.

Figure 9 provides a conceptual view of how ASTO functions as a coordinator of the various AST

activities when integrated in a CI/CD process.

Figure 9. AST Orchestration in Continuous Integration and Continuous Delivery

A handful of large organizations further along in adoption of DevSecOps have created their own

security orchestration tooling. Some examples of this that are also open-source include  Mozilla’s

Minion and  Salesforce’s Vulnreport (and the closed-source  Salesforce Chimera for Salesforce

independent software vendors). The OWASP  Offensive Web Testing Framework is yet another

open-source option. 4

These tools are often designed more as platforms that combine an automation layer with self-

service security testing where development and QA teams can initiate scans ad hoc, proactively

and outside of the CI/CD process. This makes them fundamentally similar to many AST SaaS

options, which have a predominant focus on security testing orchestration, output correlation and

centralization of results in a web application.

http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 28/46

Use Externalized Security Options

Externalized security mechanisms are those controls that exist outside of the codebase. These

can be trusted components or libraries, as well as external-security protections and production

runtime controls. In cases such as cryptography or secrets management, it is a monumental task

— even for seasoned developers — to create sufficiently secure mechanisms, emphasizing the

need to leverage externalized security.

Not all security can or should be built into the application code. Many

attacks targeting applications don’t exploit vulnerabilities within the

codebase. Rather, attackers abuse functionality provided by the

application or take advantage of misconfiguration.

We also see attacks originate at the application layer that effectively target weaknesses in the

operating environment, which gets into container security and securing infrastructure as code.

Mitigation requires externalized architectural components to reduce risk of abuse.

Apply Application Protection Before Delivery

At this point, the application has been developed, built and verified. Any additional application

protections need to be applied prior to delivery to production application servers. This includes:

Application wrapping: Provide additional secure functions such as encrypting device-side

application usage artifacts or enabling integration with enterprise mobility management.

■

Application shielding: Provide code obfuscation, encrypt secrets and data (aka white-box

cryptography), anti-tampering, anti-debugging, and some RASP-like protections.

■

Application authentication: Provide seamless authentication of the application itself as

opposed to just user authentication.

■

Code signing: Enforced by most modern operating systems and web browsers as part of their

security model to ensure authenticity and integrity of the compiled code and/or application

package. Code signing and validation mechanisms are present in  Apple Mac OS, iOS and

Safari, Google  Android and  Chrome,  Microsoft Windows,  Mozilla Firefox and Linux/UNIX

distributions. Artifact repositories and package managers like  apt (or secure apt),  Artifactory

and  Nexus use a form of public-key cryptography (typically GNU Privacy Guard [GnuPG] or

some implementation of OpenPGP) to accomplish the same outcome.

■

Runtime application self-protection: Instrument the application in runtime, providing detection

and prevention of exploits and abuse.

■

http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 29/46

The capabilities are described in detail in “Key Considerations When Building Web, Native or

Hybrid Mobile Apps,” “Building Authentication, Authorization and SSO Into API-Driven Apps” and

“Protecting Web Applications and APIs From Exploits and Abuse.” These controls exist mostly

outside the scope of the codebase. Configuration and monitoring often also involve interaction

with some external service, excluding the cases where the application doesn’t or can’t

communicate to some back end (often where application shielding and obfuscation are required).

In cases where the control is added after the application is built, these should be included as part

of your CI/CD process. Once you have performed development verification of an application or

web API, you can apply these additional protections and deliver the packaged application to any

number of hosts where it needs to live.

Some organizations may opt to perform development verification once again, but at this stage of

delivery, it would be more of an assessment of the vendor’s layered control as opposed to the

original codebase. The presumption is that the layered control is implemented and configured

correctly because you are applying it programmatically. If you desire to perform this type of

second round of testing, the recommendation is to perform it out of band and outside the CI/CD

process because it will likely require manual testing and verification.

Some potential pitfalls to be aware of include:

In some cases, organizations use these types of certificates for development work, which itself

often requires bypassing or suppressing security checks within the runtime environment. This

has sometimes resulted in the self-signed certificate and suppressed certificate check making

their way into production releases, weakening the security of the application. The best practice

is to procure a valid-signing certificate and keep code-signing checks enabled within the given

platform.

Some controls, such as application authentication or RASP, may not be purely external to the

application codebase. Depending on the vendor implementation, you may need to include

additional libraries as dependencies within the codebase prior to compilation. You may opt to

create additional custom checks within SAST to verify that the appropriate libraries are

included in your application codebases.

■

Code signing may require a specific type of code-signing certificate that is different from

traditional web server certificates used in Secure Sockets Layer (SSL)/Transport Layer Security

(TLS). Depending on the platform, this may need to come from a trustworthy root certificate

authority such as DigiCert, or you may need to generate it using the platform provider’s tools.

You will typically not be able to use self-signed certificates if the application is intended for

external distribution.

■

Code signing requires manual development tool configuration. In cases of Java applications,

Oracle’s keytool and jarsigner may be used. 5,6 For mobile application development, each

provider defines a process for how the certificate needs to be provisioned or configured within

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 30/46

Deploy Network-Based Application Protection

The network-based application protections described in “Protecting Web Applications and APIs

From Exploits and Abuse” can also be leveraged within a DevSecOps pipeline. This predominantly

includes not only API gateways and web application firewalls, but also cloud access security

broker for some use cases. CASB and respective vendor products are covered in detail in “Best

Practices for Planning, Selecting, Deploying and Operating a CASB,” “How to Secure Cloud

Applications Using Cloud Access Security Brokers” and “Magic Quadrant for Cloud Access

Security Brokers.”

Also included are cloud web application and API protection (WAAP) vendors such as Akamai, F5

and Imperva that provide combined capabilities of content delivery network, distributed denial of

service mitigation, bot mitigation and/or WAF. These are beneficial for protecting against a wider

range of application attacks that occur outside of the codebase and beyond just exploits.

Web API enablement again is the main facilitator for integration. In the context of network-based

application protections, they can be deployed or tuned in an automated way. Tuning may involve

reconfiguration of the network control itself, or it may involve updates to custom rules to block

certain senders, receivers and known exploit patterns. The rule updates may be a result of

verification testing you’ve performed, or perhaps where a virtual patch can be put in place as a

temporary or long-term corrective action. Vendors have also virtualized their products in some

cases so that they can be delivered as a virtual machine, container or SaaS.

Although virtualization and API enablement theoretically create opportunities for automation,

there are some significant pitfalls to be aware of. These include:

the IDE as well as how it will be included as part of the application build. You must parse the

relevant platform or technology documentation to satisfy the code-signing requirements.

Code signing should be the last step you perform prior to deployment. If you are making use of

an external control that is referenced within code or appended to the compiled application, this

will modify the resulting binary, which impacts hashes and code signatures.

■

Complexity in coordinating across the entire application, infrastructure and network stack

makes this a bit more unrealistic. Orchestration tooling is still maturing and emerging in the

ASTO and SOAR spaces. ASTO and SOAR capabilities facilitate integration and automation of

tools in their respective domains, but they don’t necessarily support integration with each other.

Absent an adequate vendor solution, organizations would have to construct these connections

themselves, which would be a massive undertaking. Even if all technology barriers were

removed, organizations are often structured in such a way that controls are segregated and

owned by different teams.

■

WAF integration with AST is present with many vendors, but not fully automated. Making use of

this type of function typically requires an extra step of vulnerability data export from the AST

tool and then importation into the WAF for rule creation. This would require further

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 31/46

Address Container and Infrastructure Security

Organizations are employing containers in greater numbers to enable greater levels of scalability

in cloud deployments and flexibility in choice of runtime environments of applications. An

application need not run on a physical server or virtual machine; it can also run within a container,

providing operating system abstraction and application compartmentalization. Containers have

essentially democratized application delivery, freeing application and development teams from

some of the hurdles of deploying applications in a traditional enterprise data center. The reality is

still such that container ecosystems must live within and interact with traditional environments.

This results in mixed or hybrid infrastructure environments, which inherently increases complexity.

For details on containers, container orchestration and cloud delivery of containers, see:

Running containers at scale requires some form of container orchestration engine, such as

Docker Swarm, Kubernetes or Apache Mesos. The orchestration engine is focused on scheduling,

deploying and monitoring containers and container clusters for operational purposes. This

includes functions such as performance monitoring, container health checks, container

instantiation and container termination. When packaged within a container as a service (CaaS) or

container infrastructure as a service (CIaaS), some security features such as secrets

management and identity and access management may be included as part of the offering.

improvements to native integration or web APIs within the respective tools to make the process

truly automated.

Virtual patching can help alleviate the burden on development teams to generate code fixes.

But implementation of virtual patches also needs to be verified so that they do not break

application functionality. Few organizations make use of virtual patches in production for fear

of impacting availability for users. Theoretically, with a fully automated DevSecOps pipeline, it

becomes possible to rerun test cases to ensure no impact. However, many organizations may

not fully trust tooling.

■

Deploying high numbers of virtualized, network-based application protections such as virtual

WAFs may create an unnecessary level of complexity. They may become difficult to manage at

scale, making identification of security misconfigurations or troubleshooting overly challenging.

It is still recommended to make use of cloud WAAP (or centralize on-premises network security

controls if regulation dictates that cloud can’t be used).

■

“How to Prepare for Containers and Kubernetes”■

“Using Kubernetes to Orchestrate Container-Based Cloud and Microservices Applications”■

“Containers: 11 Threats and How to Control Them”■

“Decision Point for Securing Application Architecture”■

“Guidance Framework for Securing Kubernetes”■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 32/46

There also are dedicated container security solutions to address some of the gaps that arise.

Security functionality relevant to containers for build and runtime phases include:

Availability of a given feature may vary across container types such as App Container (appc).

Container security vendors are sometimes grouped into the larger category of cloud workload

protection platforms (CWPPs). Adding to the confusion, there is overlap of cloud security and

container security functionality, but disparity between vendor feature sets.

The concept of “securing a workload” translates to different things, depending on the vendor.

Depending on their heritage, CWPP vendors focus on microsegmentation, endpoint protection,

compliance auditing, monitoring and/or vulnerability assessment. Also, a vendor may support

container instances or cloud IaaS instances exclusively, but not both. The container orchestration

engine you employ can also further complicate what is supported by the vendor. Security

functionality may be agentless. Or it may require installation of an agent on the container host,

make use of a privileged container running in parallel to other containers, or require inclusion of

security controls within container builds.

The “Market Guide for Cloud Workload Protection Platforms” can help demystify some of the

vendor variation. Being that these are newer vendor controls and often focused on container

Secrets management: Facilitate sharing of certificates, cryptographic keys, passwords and

other sensitive data with containers without hardcoding them into the container image.

■

Microsegmentation: Define network boundaries at a “micro” level, providing monitoring and

control of communication between containers and other traditional assets like bare-metal or

virtual machines, on-premises and in the cloud. The topics of microsegmentation are covered

in “Solution Comparison for Microsegmentation Products” and “Decision Point for Postmodern

Security Zones.”

■

Container configuration management and hardening: Ensure container host and image build

scripts are hardened, running only those services necessary to fulfill their function. Leverage

continuous configuration automation (CCA) and infrastructure as code (IaC) concepts and

technology.

■

Container vulnerability assessment and software composition analysis: Analyze components

of the container image prior to instantiation. Or analyze the instantiated container during

runtime to ensure no known CVEs exist initially or over the life cycle of the running container.

■

Container profiling and threat detection: Analyze behaviors such as communication paths and

file accesses of a given container to identify anomalous behaviors, which might indicate an

unhealthy container or pattern of attack.

■

Container firewalling: Detect/block traffic patterns considered to be exploits at the container

level using virtualized Layer 3-network-firewall- and Layer 7-web-application-firewall-type

capabilities.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 33/46

technology, web API enablement and integration with DevOps tooling is essentially a given. This

makes automation within a DevSecOps pipeline feasible, but it will still require a great deal of

expertise to integrate and operate across a landscape of diverse assets.

Ultimately, your container security strategy will require a mix of native container controls, native

orchestration layer controls and supplementary container-focused vendor solutions.

Secure, Test and Audit Infrastructure as Code

Server build scripts, or infrastructure as code, should be tested like other code and put through a

similar verification sequence within the CI/CD build pipeline. The topic, along with further analysis

of CCA and IaC technology, is covered in detail in “Solution Path for Infrastructure Automation.”

Auditing build scripts helps ensure verified application code is delivered to security-hardened

targets — whether bare metal, virtual machine or container and whether located on-premises or in

the cloud. If the organization has fully embraced the concepts of continuous configuration

automation and infrastructure as code, any asset identified as vulnerable can be quickly torn

down and replaced with a hardened asset.

What constitutes a hardened asset will vary according to each organization, but it is a

combination of internal policies, regulations and common server-hardening guidelines, including:

The process of verifying against these guidelines and integrating with CI/CD can look similar to

development verification. However, auditing infrastructure as code and enforcing infrastructure

security requires different sets of tooling. Server build scripts and running infrastructure can be

audited using special-purpose testing frameworks such as  Chef InSpec and  Serverspec. You will

need to create compliance testing scripts in the appropriate format to audit your infrastructure

builds, though the scripts are more human-readable and make use of BDD-like syntax. Once you

build the scripts, they can be executed as part of CI/CD.

Alternatively, commercial solutions are materializing to aid with test script generation or to

provide prebuilt scripts that can serve as compliance profiles.  Chef Compliance and  Chef

Automate are two such examples. Compliance profiles are built against the aforementioned

hardening guidelines. Any customization of infrastructure builds or additional server-level controls

unique to your environment requires customization of the test scripts. CCA tools like those from

Chef can also be used to audit running production instances according to baselines and to

reconfigure or redeploy assets accordingly.

CWPP vendors, and even some CSPM vendors, also provide compliance auditing of assets and, in

some cases, can also harden them as they are running upon detection of a misconfiguration. This

is usually facilitated via a host-based agent installed on every asset or via direct integration with

 Center for Internet Security Benchmarks■

 Defense Information Systems Agency (DISA) Security Technical Implementation Guides (STIG)■

 NIST Common Configuration Enumeration (CCE)■

http://#
http://#
http://#
http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 34/46

native cloud service provider web APIs. Vendors can vary in support of assets across internal

data centers, private cloud and public cloud. Support for AWS is usually a given, with Azure being

a close second. Google Cloud Platform and IBM Cloud are less supported. Additionally, support

for aPaaS and fPaaS support may be nonexistent, have limited functionality or be part of product

roadmaps. Some representative vendors include Alert Logic, CloudPassage, Dome9 and

Symantec.

Continuously Monitor Applications With Production Security Monitoring

In a DevSecOps approach, deployed applications and systems will have gone through a pipeline

similar to what has been described thus far. Organizations embracing this strategy should find

that performing AST against production applications is less necessary because verification is

integrated as part of CI/CD build process. Regular AST might still be part of your process (as out-

of-band activity) to account for:

Security monitoring of applications postdeployment is more about catching potential

misconfigurations, identifying unsanctioned implementations or uncovering new patterns of

application attack. Security monitoring can also serve as a fail-safe to account for cases such as

security tooling inefficiency or mixed modes of development and operations within the

organization. The production security monitoring focus of DevSecOps gets into security

configuration assessment, vulnerability assessment and SecOps.

Relevant research in these areas include:

Vulnerability assessment (VA) tools can be automated much like software composition analysis

and application security testing. They can be executed as part of CI/CD, if so desired, to verify a

bare-metal server, virtual machine or container has been configured securely and without known-

vulnerable services. However, VA tools are more likely to be run continuously as part of regular

production maintenance to identify issues that emerge over the life cycle of a given application

and the systems that power it. Output destination of results is more likely to be VPT as opposed

to ASOC, but some linkage back to defect tracking systems like Jira may still be desirable.

Verification tooling improvements such as replacing or adding tools for DAST or fuzzing, or for

regular scanning engine updates provided by the vendor

■

Assessment of legacy applications or applications in maintenance mode where no code

changes occur that would otherwise trigger verification as part of CI/CD

■

Satisfaction of regulatory compliance or corporate policy that mandates regular, point-in-time

audits

■

“Adapting Vulnerability Management to the Modern IT World of Containers and DevOps”■

“A Guidance Framework for Developing and Implementing Vulnerability Management”■

“How to Use Threat Intelligence for Security Monitoring and Incident Response”■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 35/46

Vendors in the VA space also focus on API enablement to provide integration with disparate

systems, and orchestration capabilities come in the form of SOAR as opposed to ASTO.

Externalized security mechanisms also play a role here. Network-based application protections

(such as bot mitigation, RASP and WAF) and container security (such as container-level

composition analysis, profiling and threat detection) provide benefit to production security

monitoring beyond just mitigation of application attacks. Additionally, some of the CWPP

products provide capability to continuously monitor assets postdeployment. The tools integrate

with SIEM systems natively in some cases, or logs can be another data source for SIEM systems

and process. If applications are undergoing attack, these mechanisms are a source of rich data to

feed security monitoring. You can use this data to inform and initiate separate verification

activities as appropriate, such as when attack patterns emerge or new vulnerabilities in acquired

software are disclosed.

Ensure You Haven’t Missed Something

Security incidents have highlighted the fact that not everything will go through established

processes or build pipelines. At times, project initiatives may be fast-tracked, bypassing

established business and SDLC processes. These are sometimes broadly categorized as

unsanctioned IT.

Even with the converse of sanctioned IT initiatives, it can be difficult to maintain inventory of all

your applications and APIs over time, especially when accounting for on-premises and cloud-

hosted applications. Tooling is also difficult to implement, integrate and tune over time, which can

result in security gaps. A DevSecOps program should employ some level of continuous discovery,

leveraging other tooling as needed to ensure there’s visibility of an organization’s entire

application portfolio.

Some examples of leaks that have impacted a number of large organizations include:

This is often more of a side effect of inadequate or inconsistent log analytics and security

monitoring for both on-premises and cloud assets. Some positive behavior patterns observed

within organizations employing DevSecOps programs include:

Misconfigured or unpatched internet-facing, on-premises servers or cloud instances■

Sensitive data, code or secrets inadvertently or deliberately stored in public repositories such

as Amazon S3, GitHub and Reddit

■

Offshore assets that may not be as secured or hardened as onshore equivalents■

Leveraging secure web gateways and a CASB to expose sanctioned and unsanctioned SaaS

use and highlight where sensitive data about applications or original source code may be

leaving the organization

■

Tapping into web-based network scanner repositories (such as  Shodan or  Censys) or SSL/TLS

auditing and URL reconnaissance-type services (such as  Qualys SSL Labs or  ImmuniWeb) to

■

http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 36/46

Strengths

Practitioners should take note of the following strengths associated with DevSecOps:

expose data about the organization’s publicly accessible assets

Analyzing data from customer experience management and marketing analytics platforms to

expose commonly browsed URLs and usage patterns (Commonly accessed applications often

become higher-value targets that may warrant additional rounds or deeper levels of security

testing to focus on what’s being actively accessed or attacked.)

■

The growing trend of web API enablement of security and nonsecurity tooling makes it possible

for organizations to integrate disparate development, security and operations processes.

Tooling integration and automation produces greater consistency and enables detection of

issues earlier in the SDLC. This can reduce likelihood of expensive (in terms of time and

money) application code changes that resulted from traditional point-in-time testing in later

stages of the SDLC.

■

Application security vendors are embracing the concept of DevOps and ensuring their tools

integrate within the SDLC ecosystem through command line interfaces, web APIs or native

integration. This is true for verification tooling (such as SCA and AST) as well as externalized

security (such as network-based application protections and container security). Dedicated

ASOC and ASTO solutions also exist to help integrate and automate security testing. This helps

alleviate some of the API integration work needed to coordinate testing as part of a CI/CD build

pipeline.

■

Tooling to mitigate the risk of known, vulnerable open-source software components is plentiful.

A number of options exist, focused on either the software composition analysis aspect or a

more complete open-source software governance solution. The vendors have also done a great

deal of work to ensure integration with IDEs, VCSs, binary repositories and CI/CD systems

where teams may inadvertently introduce vulnerable open-source components into an

application codebase.

■

Technology has evolved substantially to protect the application runtime environment. CCA and

IaC make the traditional, manual process of building and configuring a server fully scriptable

and auditable, whether the target is bare metal, virtual machine or container. This helps ensure

consistent and hardened operating environments for applications. Cloud and container

providers also offer some security capabilities natively for virtualized assets. Dedicated CWPP

and container security vendors have also emerged to address aspects of application security in

virtualized environments.

■

Externalized security mechanisms offer significant improvements to application security

beyond what is possible in code alone, alleviating some of the heavy reliance on development

verification. Application protections can provide mitigations against other types of application

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 37/46

Weaknesses

Practitioners should take note of the following weaknesses associated with DevSecOps:

attacks like abuse, as opposed to just exploits. CWPP and container security solutions also

help address protection and monitoring of cloud or container deployments.

Security practitioners need to adapt to the new realities of DevOps, learning some development

techniques themselves or working in tighter collaboration with development teams. Even still,

integrations may be fragile where a change to an API of a given tool can cause a failure in the

overall toolchain.

■

Integration and automation of tooling for most organizations is still overly complex. This is

especially true for organizations utilizing multiple point solutions or managing multiple CI/CD

build pipelines due to different technology stacks or organization structure. GUIs aren’t readily

used in the world of DevOps, or they don’t provide the right level of granularity to configure

tooling. Native integration with SDLC systems is also often limited to the popular vendors.

Integration of disparate security and nonsecurity tools requires an individual skilled in scripting

and/or basic coding to communicate with and integrate web APIs.

■

Although consistency is a strong suit of security tooling automation, accuracy and code

coverage of AST scan engines continue to be an issue, resulting in either high false positives or

false negatives. This can be exacerbated by modern application design, which can throw off

scan engines that were designed to work with older technology. In the absence of human

testing, barrages of different AST technologies and vendor products are sometimes used to

compensate for the inherent weaknesses in tooling, but this also generates higher volumes of

vulnerability data to parse.

■

Business logic testing continues to be a pitfall for most AST tools. This type of testing often

requires well-defined, highly custom test cases if an AST tool even supports it. Special-purpose

tools designed for business logic testing can also be difficult to configure and use, which will

likely introduce manual work into the DevSecOps process. Business logic issues are best

prevented as part of secure design activities or mitigated with network-based application

protections (such as with bot mitigation).

■

ASTO and ASOC help integrate and automate the AST process. VPT and SOAR help do the

same for the VA process. However, there is currently no unified tooling or integrations between

the two to facilitate full-security orchestration, which many organizations desire. The respective

vendors that offer these capabilities are also still relatively young and maturing.

■

The rapid growth of DevOps tooling and practices has resulted in some significant security

gaps for organizations racing to adopt the wide range of related technology. This has resulted

in a number of negative outcomes for organizations, such as exposed web APIs, vulnerable

OSS components embedded in code and secrets stored in unsecure locations. In some cases,

these have been a contributing factor to incidents or breaches. Security practices and vendor

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 38/46

Guidance

Establish a Basic DevSecOps Pipeline When Just Starting

Start with a baseline of simple tooling that satisfies the various capabilities, possibly leveraging

OSS options initially if budget is restricted. Focus on security tooling that you can easily integrate

within your existing SDLC ecosystem, minimizing impact to application teams. Consider initial

stages of the pipeline a working prototype as you work through the learning curve and adapt to

the new processes.

For DevOps (and agile), it is recommended that, when possible, applications should be able to

automatically be built as a result of code being committed to the VCS, and the application should

be automatically deployed. With that basic pipeline in place, you can add statics analysis, SAST,

DAST and test automation (unit, functional, integration and performance)

To prove out the prototype, work with a small number of application teams (and subset of the

applications they own) — or even one to start — that are flexible with changing process or tooling.

Once you’ve established a working DevSecOps toolchain, the next decision point should be which

product owners and applications and associated teams to involve, work with and onboard.

Identify new projects and forward-thinking development and operations staff to grow your user

base and tweak the DevSecOps toolchain.

Again, selecting newer projects as opposed to legacy applications will guarantee a higher level of

success. Attempting to onboard too many teams and applications will overload your teams, the

DevSecOps tooling and/or the computing assets that enable the toolchain. Once the DevSecOps

toolchain and processes are established, prioritize onboarding of teams and applications that

represent the highest potential impact to the organization if a security incident were to occur.

Standardize Your SDLC Processes and Tooling First

Standardize SDLC processes and tooling critical to DevOps before attempting to establish a

DevSecOps pipeline. Critical elements include the following processes and systems:

tooling have struggled to keep pace at times. Many organizations are still early in the learning

curve on DevOps concepts or are scrambling to establish a DevSecOps toolchain to deal with

the technology sprawl.

Application development life cycle management■

Defect tracking■

Version control for source code and binary artifacts■

Continuous integration and continuous delivery■

Test automation■

Continuous configuration automation■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 39/46

In the absence of standardization in any of these areas, integrating application security will be

overly complex and may result in gaps.

Select Security Tooling That Integrates With SDLC Systems

Security tooling and processes need to be integrated into the SDLC. Favor vendors that readily

integrate with DevOps systems and processes. If possible, avoid too many point solutions. Select

vendors that can offer a wider range of security capabilities across the DevSecOps toolchain. This

will reduce the amount of integration work as well as the learning curves of disparate tools and

their associated UI/UX. Running the tools and handling output should be as transparent as

possible to teams, triggered as part of standard SDLC activities and the CI/CD process. Note that,

in some circumstances, you may have no choice but to use different tools in different pipelines

due to technology stack, language or domain.

Tooling also does not need to be a financially expensive endeavor. OSS options exist in most

categories, which can be used for basic maturity approaches or until budget can be allotted. They

are also useful for learning the processes and techniques prior to committing to a large purchase.

It is certainly possible to mix and match OSS and commercial off-the-shelf (COTS) products to

build your DevSecOps toolchain.

Resign Yourself to Semiautomation With Secure Design Activities

Avoid the use of spreadsheets for tracking security requirements if possible. Ideally, your security

requirements should be implemented within an ADLM suite as nonfunctional requirements. This

helps emphasize that development teams should satisfy security requirements as they build

applications. However, you still need to lean on security verification tooling to catch issues and

ensure requirements were followed. Invest some effort in providing secure coding practices for

development teams because these will be the prescriptive guidance in how they can satisfy

security requirements. Host them in ADLM or knowledge management systems to ensure the

guidance is readily available.

Reserve threat models for high-sensitivity applications as an out-of-band process, or emphasize

incremental threat models because it is difficult to create and maintain models over time as code

changes. Modern application design and use of APIs can result in “spaghetti” diagrams that

become unreadable. Threat modeling may also be more beneficial within application security

training and awareness efforts, as opposed to attempting to fit it into a DevSecOps program.

Avoid Excessive Focus on Secure Design

The DevSecOps approach consists of multiple focus areas beyond just secure design and

development verification. Application security practices also include externalized security and

production security monitoring, which is where infrastructure, operations and network teams

often share responsibility.

Collaborate with these teams in your organization as well, and don’t limit interactions to just

development or QA. Adopt new security tooling as appropriate to build up the other aspects of the

DevSecOps toolchain. The implementation of externalized security and production security



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 40/46

monitoring alleviates some of the burden on development teams and latency in development-time

application security, especially for manual activities like security requirements gathering or threat

modeling. You also shouldn’t mitigate all modern application attacks with code-level mitigations

alone.

The Details

DevOps Practices and Technology

DevOps has a number of implied meanings and impacts to application security. The concepts are

covered in detail in other Gartner research, such as:

Developers and operations staff are likely working with many of the following:

 “The Keys to DevOps Success” (webinar)■

“A Guidance Framework for Continuous Integration: The Continuous Delivery ‘Heartbeat’”■

“Solution Path for Infrastructure Automation”■

“Extend Agile With DevOps for Continuous Delivery”■

“Solution Path for Achieving Continuous Delivery With Agile and DevOps”■

“How to Automate Your Network Using DevOps Practices and Infrastructure as Code”■

“Choose the Right Metrics to Drive Your Agile, DevOps and Continuous Delivery Initiatives”■

Application development life cycle management for tracking life cycle of code and the

activities around it, such as functional and nonfunctional testing, defect tracking, and project

scheduling. More recently, and to support agile and DevOps trends, Gartner has relabeled this

category of technology as “enterprise agile planning (EAP) tools.” See “Magic Quadrant

for Enterprise Agile Planning Tools.”

■

Version control systems for storing and organizing uncompiled source code. The VCS is

sometimes also referred to as a code repository or source control management (SCM) system.

Developers push or pull code from it, as well as commit code to trigger build and CI processes

facilitated through hooks (or webhooks in the case of HTTP) with CI/CD servers.

■

Binary repository managers for storing and organizing any type of binary artifact, including

compiled applications or libraries, server builds, container images, and other objects. These

may be artifacts created as output from builds, or they may be artifacts needed for builds to

complete.

■

A structured continuous integration/continuous delivery build pipeline, with a focus on

orchestration and automation with other SDLC systems. See “A Guidance Framework

for Continuous Integration: The Continuous Delivery ‘Heartbeat’” and “How to

■

http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 41/46

Practitioners sometimes confuse agile development methodologies and DevOps practices, but

they are distinctly different. Agile development methodologies have more to do with how

development teams are structured and how developers create code, as opposed to how code is

compiled and released in DevOps. Agile methodologies include Scrum and Extreme Programming,

and the result is essentially that iterative code changes at a faster cadence. This further

necessitates automation and DevOps practices, including the integrated and automated CI/CD

build pipeline, in order to be successful. Technically, DevOps practices and tooling can exist

without agile development methodologies, but the reverse situation is less true.

Open-Source Software Options in a DevSecOps Toolchain

Though OSS can equate to “free” in some cases, there are still hidden costs of employing OSS in

enterprise environments. Tools still require resources to install, configure and operate. In some

cases, the tools may be harder to configure and maintain than their COTS counterparts. They may

also require more custom code to integrate and work as expected.

There is a great deal of commoditization of development languages, frameworks and libraries.

Many are OSS, creating a low barrier to entry. In some cases, the tools are “freemium” (limited

functionality in free model, but pay for advanced functions) but mostly lower-cost.

Architect Continuous Delivery Pipelines for Cloud-Native Applications.” CI/CD facilitates the

compilation and delivery of software and is a combination of:

Continuous integration centered on the build process, pulling in necessary components and

compiling the application

■

Continuous delivery centered on distribution of the application to infrastructure (web,

application and/or database servers, etc.) to ensure that it is fully runnable and accessible

■

Continuous deployment (sometimes mixed with continuous delivery) as an extension of

continuous delivery where delivery to production is fully automated without a manual gate

prior to deployment

■

Test automation, which provides the ability to execute user interface (UI), user experience (UX)

and business logic tests programmatically as part of CI. See

“Solution Path for Testing Software Applications.”

■

Continuous configuration automation and infrastructure as code for automating server

operations and building hardened server images for deployment to bare metal, virtual machines

or containers (or container clusters). See “Solution Path for Infrastructure Automation.”

■

Abstraction and virtualization of workloads, where applications or pieces of them run on

physical or virtualized assets on-premises or in the cloud. Related cloud trends include greater

adoption of application platform as a service or function platform as a service, as opposed to

the more traditional infrastructure-as-a-service model.

■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 42/46

Some examples of OSS options for SDLC systems can be found in Table 1.

Table 1: Example Open-Source Options for SDLC Systems

Source: Gartner (June 2020)

Conversely, application security tooling is less commoditized. Tools exist in many of the

categories, but support (if existent) may be limited and security practitioner communities may be

nonexistent. The OWASP community is one of the largest and most well-known. Some tools are

unmaintained, alpha/beta projects or feature-limited. This is getting better in some cases,

especially with freemium options. Some of the options are listed in Table 2.

Table 2: Example Open-Source Options for Application Security Tools

Application Development Life Cycle
Management

GitLab Community Edition (CE) and GitHub

Continuous Integration andContinuous
Delivery

Jenkins Community

Defect Tracking Bugzilla

Continuous Configuration Automation Ansible, Chef and Puppet

Version Control System

Binary Repository

Test Automation Cucumber, Puppeteer, Selenium and PhantomJS

SDLC System Open-Source Software Options

On-premises: Apache Subversion (SVN) and git■

Cloud: GitHub and GitLab■

On-premises: JFrog Artifactory and Nexus
community

■

Cloud: GitHub and GitLab■

Security Requirements Secure Design OWASP SKF

Application

Security Tool

Category

Application

Security

Focus

Open-Source Software Options



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 43/46

Threat Modeling Secure Design

Software Composition
Analysis

Development
Verification

Static Application
Security Testing

Development
Verification

Dynamic Application
Security Testing

Development
Verification

Arachni, OWASP ZAP and w3af

Interactive Application
Security Testing

Development
Verification

Hdiv Community

Binary orProtocol
Fuzzing

Development
Verification

American fuzzy lop, libFuzzer, Radamsa and Sulley
(and the forked boofuzz)

Application Vulnerability
Correlation

Development
Verification

Application Security
Testing Orchestration

Development
Verification

BDD-Security, Gauntlt and Mozilla Minion

Code Obfuscation Externalized
Security

ProGuard

Application

Security Tool

Category

Application

Security

Focus

Open-Source Software Options

Microsoft Threat Modeling Tool■

Mozilla SeaSponge■

OWASP Threat Dragon■

On-premises: OWASP Dependency Check,
Retire.js and VersionEye

■

Cloud: GitLab Gemnasium, nsp Live and Snyk■

On-premises: OWASP Find Security Bugs,
Salesforce Providence and SonarSource
SonarQube

■

Cloud: SonarSource SonarCloud and Software
Assurance Marketplace (SWAMP)

■

Code Dx Standard Edition■

Denim Group ThreadFix Community Edition■



8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 44/46

Source: Gartner (June 2020)

Gartner Welcomes Your Feedback

We strive to continuously improve the quality and relevance of our research. If you would like to

provide feedback on this research, please visit  Gartner GTP Paper Feedback to fill out a short

survey. Your valuable input will help us deliver better content and service in the future.

Evidence
1  “How to Fit Threat Modeling Into Agile Development: Slice It Up,” Irene Michlin, DevSecCon

London 2018.

2  ThreatModel SDK, GitHub.

3  OWASP Top 10 2017: The Ten Most Critical Web Application Security Risks, Open Web

Application Security Project.

4  Offensive Web Testing Framework, OWASP.

5  Keytool — Key and Certificate Management Tool, Oracle Java SE Documentation.

6  Jarsigner — JAR Signing and Verification Tool, Oracle Java SE Documentation.

7 Social Media Analytics (SMA) Methodology: Gartner conducts social listening analysis

leveraging third-party data tools to complement or supplement the other fact bases presented in

this research. Due to its qualitative and organic nature, the results should not be used separately

from the rest of this research. No conclusions should be drawn from this data alone. Social media

Continuous
Configuration
Automation Auditing

Externalized
Security

Chef InSpec, Serverspec

Runtime
ApplicationSelf-
Protection

Externalized
Security

Hdiv Community

Web Application
Firewall

Externalized
Security

ModSecurity

Application

Security Tool

Category

Application

Security

Focus

Open-Source Software Options

http://#
http://#
http://#
http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 45/46

data in reference is from 1 January 2017 through 25 December 2019 in all geographies (except

China) and recognized languages.

8 Additional research contributions were provided by Ritesh Srivastava and Ayush Saxena from

the Gartner Social Media Analytics team.

Document Revision History
Structuring Application Security Practices and Tools to Support DevOps and DevSecOps - 28

November 2017

Recommended by the Authors
A Guidance Framework for Developing and Implementing Vulnerability Management

A Guidance Framework for Establishing and Maturing an Application Security Program

How to Deploy and Perform Application Security Testing

Protecting Web Applications and APIs From Exploits and Abuse

Containers: 11 Threats and How to Control Them

Best Practices for Securing Continuous Delivery Systems and Artifacts

Solution Path for Forming an API Security Strategy

Recommended For You
How to Deploy and Perform Application Security Testing

Decision Point for Postmodern Security Zones

Best Practices for Choosing Network Security Controls Between EFW, SWG and CASB

5 Core Security Patterns to Protect Against Highly Evasive Attacks

Decision Point for Deploying WAFs for Application Protection

© 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc.

and its affiliates. This publication may not be reproduced or distributed in any form without Gartner's prior

written permission. It consists of the opinions of Gartner's research organization, which should not be

construed as statements of fact. While the information contained in this publication has been obtained from

sources believed to be reliable, Gartner disclaims all warranties as to the accuracy, completeness or adequacy

of such information. Although Gartner research may address legal and financial issues, Gartner does not

provide legal or investment advice and its research should not be construed or used as such. Your access and

use of this publication are governed by Gartner’s Usage Policy. Gartner prides itself on its reputation for

independence and objectivity. Its research is produced independently by its research organization without input

http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#


8/6/2020 Structuring Application Security Tools and Practices for DevOps and DevSecOps

https://www.gartner.com/document/3986517?ref=ABABYSDocConvEmail&utm_source=GartnerABA&utm_medium=email&utm_campaign=BY… 46/46

or influence from any third party. For further information, see "Guiding Principles on Independence and

Objectivity."

About Gartner Careers Newsroom Policies Privacy Policy Contact Us Site Index Help Get the App

© 2020 Gartner, Inc. and/or its affiliates. All rights reserved.

http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#
http://#

